

Level 3 Gridding Experience from the PATMOS-x Project

Andrew Heidinger

NOAA/NESDIS/STAR/CoRP Advanced Satellite Product Branch

What is PATMOS-x

- -An AVHRR based cloud climatology. We run algorithms that share much physical consistency with the MODIS Atmospheres Team where possible.
- -Data record spans from 1981 to the present and should extend to 2020.
- Effort underway to go back in time on AVHRR/1 (back to 1978) and forward in time on NPOESS VIIRS.
- Level-3 products are generated at 0.5 degree resolution using an equal-area (ISCCP-like) grid.

http://cimss.ssec.wisc.edu/patmosx/

Definitions

LEVEL-2b = sub-sampled and regularly gridded LEVEL-2

old way

LEVEL-1b __ LEVEL-2 __ LEVEL-3

new way

Motivation for Level-2b

- ➤ The averaging done in Level-3 data is not optimal for many cloud studies (*PATMOS-x level-3 did not contain the histograms in MYD08*).
- ➤ Evolving Level-3 requirements for the GEWEX Cloud Climatology Assessment Reports required more flexibility than offered by standard PATMOS-x level-3
- > We do not have the resources to store level-2 archive.
- ➤ Therefore level-2b developed to
 - maintain flexibility to make a level-3 on-the-fly optimized for the question being posed.
 - maintain ability to conduct cloud remote sensing studies
 - have a data small enough to serve in its entirety.

Level-2b Employs **Nearest Neighbor** Sampling on a Equal-**Angle Grid**

Contents of a PATMOS-x Level2b

```
longitude
                             emissivity 11um tropopause
latitude
                             Aerosol optical depth 063 micron
                             quality_flags_1
scan line time
sensor zenith
                             quality flags 2
solar_zenith
                             063_micron_reflectance
                             086_micron_reflectance
relative azimuth
solar azimuth
                             375-11_micron_temperature_difference
cloud type
                             11 micron temperature
                             11-12_micron_temperature_difference
packed_land_cover
cld_top_pressure
                             11_micron_temperature_std_dev_3x3
cld_top_temperature
                             ndvi sfc
cld emissivity
                             surface temperature
                             remote_sensing_reflectance
cld beta 11 12
cld optical depth
                             Bayesian cloud probability
cld effective radius
                             cloud_albedo
                             cloud_transmission
```

Product listed constrained by size and by analysis we want to do. Number of level-2b parameters much smaller than level-3. No need for statistics (mean and std dev) for properties stratified by phase (ice, water).

Level-2b includes enough observations to make RGB images to help diagnose and verify analysis

Level-2b 0.2 degree 60S-60N products are now available.

False Color Image False Color Image Red=0.63 μ m, Green = 0.86 μ m, Blue = 11 μ m (reversed) Red=0.63 μ m, Green = 0.86 μ m, Blue = 11 μ m (reversed)

Level-2b Size

- 0.2 degree = 1.62 million points. An I2 field = 3.24 mb
- A PATMOS-x level-2b file = 58 mb uncompressed = 25mb compressed
- Entire Record = 2 daily for 64 satellite years = 1.2 Tb (1978-2010)
- We also have some level-1b subsets for certain regions that allow us to go from level-1b to level-2b from 1978 to 2010 in under a week. Very helpful for data set verification.

Example visual comparison of 1x1 degree Level-3 and 0.2 degree Level-2b

EXAMPLE 0.05 Level-2b Image

patmosx_n18_asc_2007_194.level2b

False Color Image Red=0.63 μ m, Green = 0.86 μ m, Blue = 11 μ m (reversed)

points per 1°x1° cell = 441

EXAMPLE 0.1 Level-2b Image

patmosx_n18_asc_2007_194.level2b

False Color Image Red=0.63 μ m, Green = 0.86 μ m, Blue = 11 μ m (reversed)

points per $1^{\circ}x1^{\circ}$ cell = 121

EXAMPLE 0.2 Level-2b Image

patmosx_n18_asc_2007_194.level2b

False Color Image Red=0.63 μ m, Green = 0.86 μ m, Blue = 11 μ m (reversed)

points per $1^{\circ}x1^{\circ}$ cell = 36

COMPARISON OF ERRORS IN MEAN REFLECTANCE DUE TO LEVEL-2b SAMPLING

points per $1^{\circ}x1^{\circ}: 0.05^{\circ} = 441; 0.1^{\circ} = 121; 0.2^{\circ} = 36$

COMPARISON OF ERRORS IN STANDARD DEVIATION REFLECTANCE DUE TO LEVEL-2b SAMPLING

points per $1^{\circ}x1^{\circ}: 0.05^{\circ} = 441; 0.1^{\circ} = 121; 0.2^{\circ} = 36$

Concluding Points

- A climate data set has to be small enough to be down loaded in its entirety by a large number of users.
- PATMOS-x can be used to extend MODIS science back in time, so lets end up with the same level-2b format and naming conventions.
- Equal-area grids offer obvious advantages but it is hard to beat the convenience of equal-angle grids for analysis.
- •We have found that making smaller regional-scale level-2b data are very effective data-sets.